Glucose-6 phosphate dehydrogenase mutations and haplotypes in various ethnic groups.

نویسندگان

  • W Xu
  • B Westwood
  • C S Bartsocas
  • J J Malcorra-Azpiazu
  • K Indrák
  • E Beutler
چکیده

Mutations that produce glucose-6-phosphate dehydrogenase (G6PD) deficiency have been identified in samples from patients with hemolytic disease in the United States, and in G6PD-deficient samples from Greece, the Canary Islands, the Czech and Slovak Republics, South China, and in samples from the Coriell Cell Repository. Eight new mutations are described. Particularly unusual were a nonsense mutation ("G6PD Georgia"1284A), a deletion of six bases ("G6PD Stony Brook" 724-729 del) coding for two amino acids, and a deletion of the invariant dinucleotide ApG at the 3' acceptor splice site in the highly conserved sequence between intron 10 and exon 11 ("G6PD Varnsdorf"). In addition, five new missense point mutations were identified: "G6PD Cleveland"820A creates a deduced AA 274 Glu-->Lys; "G6PD West Virginia"910T AA 303 Val-->Phe; "G6PD Fushan"1004A, AA 335 Ala-->Asp; "G6PD Olomouc"1141C AA 381 Leu-->Phe; and "G6PD Praha"1166G AA 389 Glu-->Gly. All of the new mutations except for "G6PD Fushan"1004A were found in patients with hereditary nonspherocytic hemolytic anemia. A coincidental finding in the case of G6PD "West Virginia" was a C-->T transition at nucleotide 1,191. This silent mutation, Asn-->Asn, appears to be rare. Haplotype analysis of mutations in samples from the Canary Islands and South China agreed with previous findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Identification of the Most Prevalent Mutations of Glucose-6-Phosphate Dehydrogenase (G6PD) in Fars and Isfahan of Iran

Glucose-6-phosphate dehydrogenase (G6PD) in humans is in X-linked disorder, housekeeping enzyme and vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho Gluconat in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cells against ox...

متن کامل

SPREAD OF THE GLUCOSE-6-PHOSPHATE DEHYDROGENASE VARIANT (G6PD-MEDITERRANEAN) IN ONE OF THE COASTAL PROVINCES OF CASPIAN SEA IN IRAN

In order to explore the nature of glucose-6-phosphate dehydrogenase (G6PD) deficiency in one of the coastal provinces of the Caspian Sea (Mazandaran) in Iran, we have analysed the G6PD gene in 74 unrelated G6PD-deficient males (2-6 year children) with a history of Favism, by using PCR and subsequent digestion by appropriate restriction enzymes, looking for the presence of certain known mutation...

متن کامل

New glucose-6-phosphate dehydrogenase mutations from various ethnic groups.

Seven new mutations that produce glucose 6 phosphate dehydrogenase (G6PD) deficiency are described. Three are in variants that were biochemically characterized and described previously, while four were found in samples that had not been characterized biochemically. Several of the mutations affect the amino acids that are mutated in other G6PD variants. As had been noted previously, variants tha...

متن کامل

Molecular Identification of the Most Prevalent Mutations of Glucose-6-Posphate Dehydrogenase (G6PD) Gene in Deficient Patients in Khorasan Province of Iran

Glucose-6-phosphate dehydrogenase (G6PD) enzyme catalyses the first step in pentose phosphate pathway (conversion of glucose-6-phosphat to 6-phospho gluconat) which provides cells with pentoses and reduction power in the form of NADPH. In the present study we have analyzed the G6PD gene mutations in 76 patients with a history of favism in Khorasan province in Iran. DNA samples were analyzed for...

متن کامل

MOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE

Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 1995